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The propagation of a premixed laminar flame supported by an exothermic chemical
reaction under adiabatic conditions but subject to inhibition through parallel endother-
mic chemical processes is considered. These consist of the endothermic decomposition
of an inhibitor W leading to the formation of a ‘radical scavenger’ S, which acts as a
catalyst for the removal of active radicals X through an additional termination step.
The heat loss through the endothermic reaction and the action of the radical scaven-
ger, represented by the parameters α and ρ, both have a strong quenching effect on
wave propagation. The dependence of the flame velocity c on α and ρ is determined
by numerical integration of the flame equations for a range of values of the other
parameters. The (ρ, c) curve can have at least one turning point, the (α, c) curve can
be monotone or it can have one or three turning points, depending on the values of
the parameters β, representing the rate at which inhibitor is consumed, µ, the ratio
of the activation energies of the reactants and the Lewis numbers. The additional fea-
ture caused by the scavenger is that the (α, c) curve has a turning point for any (µ, β)

parameter pair if ρ is sufficiently large. A new feature of the model is that, for non-
zero values of ρ, there can be four solutions below critical values of α. This behaviour
is confirmed by a high activation energy analysis, which also reveals some additional
features of the flame structure resulting from the presence of the radical scavenger.
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1. Introduction

Until recently, the main methodology for tackling large-scale fires has
involved the use of chemical flame extinguishants based on halon species. The
use of such species has, however, now been banned under the Montreal Proto-
col in order to protect the Ozone Layer. No substitute extinguishant has yet been
satisfactorily identified. Consequently it would be useful to develop an under-
standing of a general mechanism for flame quenching in order to aid the devel-
opment of new extinguishants. The theoretical investigation of flame quenching
started with Buckmaster’s paper [1]. Since then, several simple models have been
studied. Most of these studies of flame quenching, see [1,2,6,10,16] for example,
have been concerned with heat removal through physical processes such as con-
duction or radiation. More recently a new idea, chemical quenching, has been
introduced. In this situation a fine mist comprising a dilute solution of sim-
ple chemical salts is used. The mechanism of this inhibition is expected to arise
through some endothermic process, for example through the evaporation of the
water mist, and then through the catalysis of radical removal by the salt par-
ticles formed in this process. The simplest mechanism involving these steps has
already been investigated by the present authors [11–13]. In the present paper we
investigate a more realistic, and hence a more complicated model, which is an
extension of the Zel’dovich–Liñan model [5] with an endothermic chemical pro-
cess and which also includes the effects of a radical scavenger on the active com-
bustion radicals.

In this case, the ‘heat loss’ process is controlled by the endothermic decom-
position of an inhibitor species W leading to the formation of a ‘radical scaven-
ger’ S, which acts as a catalyst for the removal of active radicals X through an
additional termination step. In particular, we are concerned with determining the
conditions for the establishment of constant-velocity constant-form flame struc-
tures and the dependence of the flame speed on the reaction parameters. Our
model involves the chemical reactions

A → X rate = kia e−Ei/RT ,

A + X → 2X rate = kbax e−Eb/RT ,

X + X → P1 + heat rate = ktx
2, (1)

W → rS − heat rate = kww e−Ew/RT ,

S + X → S + P2 rate = kssx.

Here A is the reactant, X is a radical intermediate, W is an inhibitor species, S is
the radical scavenger, P1, P2 are inert products and T is (absolute) temperature.
The first three (initiation, branching and termination) steps form the Zel’dovich–
Liñan model [5], with rate constants ki, kb, kt . The last two steps, with rate
constants kw, ks , represent the endothermic generation and action of a chemical
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scavenger S from some precursor W . The third step has a positive exothermi-
city (negative reaction enthalpy) Qt > 0, and the fourth step has a negative
exothermicity, Qw < 0. The activation energies of the corresponding steps are
Ei, Eb, Ew and R is the universal gas constant. We can expect the initiation
step to be a relatively slow process in the flame context and will be neglected in
our model, i.e. ki = 0 is assumed.

One possible interpretation of the third and fourth steps in the above mech-
anism is the evaporation of droplets of a solution of an ionic salt producing a
dispersion of solid salt particles, which then catalyse the termination of radical
species. The simple first-order, Arrhenius kinetics representation of the evapora-
tion process is clearly a simplification, perhaps appropriate to small extents of
evaporation, but may allow generic features to be revealed. The stoichiometric
parameter r then would be proportional to the concentration of the salt dis-
solved in the droplets, with r = 0 corresponding to pure water.

The model equations governing our system, written in a reference frame
moving with the flame, are [14–17]

mA′(z) = σDAA′′(z) − kbe−Eb/RT A(z)X(z)
σ 2

µX

, (2)

mX′(z) = σDXX′′(z) + kbe−Eb/RT A(z)X(z)
σ 2

µA

− 2ktX(z)2 σ 2

µX

− ksS(z)X(z)
σ 2

µS

,

(3)

mW ′(z) = σDWW ′′(z) − kwe−Ew/RT W(z)σ, (4)

mS ′(z) = σDSS
′′(z) + rkwe−Ew/RT W(z)

σµS

µW

, (5)

mCpT ′(z) = λT ′′(z) + QtktX(z)2 σ 2

µ2
X

+ Qwkwe−Ew/RT W(z)
σ

µW

, (6)

where A, X, W, S are mass fractions of the corresponding species, m is
mass flux, σ is total density, DA, DX, DW, DS are the diffusion coefficients,
µA, µX, µW, µS are molar masses, Cp is the constant-pressure specifc heat and
λ is thermal conductivity. Primes denote differentiation with respect to the travel-
ling wave co-ordinate z. Equations (2–6) are subject to the boundary conditions

A → A0, X → 0, W → W0, S → 0, T → Ta as z → −∞, (7)

A′ → 0, X′ → 0, W ′ → 0, S ′ → 0, T ′ → 0 as z → +∞, (8)

where A0 and W0 denote the initial mass fractions of reactants A and W and Ta

is the ambient temperature and are the conditions ahead of the flame.
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Some aspects of kinetic system (1) were investigated using high activation
energy asymptotics in [8]. The time dependent system corresponding to this
model was investigated numerically in [4]. We have also considered this system
in the scavenger-free case (r = 0) with unit Lewis numbers in [7,12], and with
arbitrary Lewis numbers in [13]. In [12,13] the exothermic reaction was taken to
be a first-order reaction. From these previous studies, we expect the important
parameters to be α, which represents a characteristic rate at which heat is lost
by the endothermic reaction relative to the rate at which it is produced by the
exothermic reaction, β the rate at which the inhibitor W is consumed relative to
the fuel A, ρ, which represents the fraction of radical scavenger molecules pro-
duced by the decomposition of the inhibitor W, and µ = Ew/2Eb, the ratio of
the activation energies.

The aim of the present work is to determine how the dimensionless flame
velocity c depends on the ‘heat loss’ parameters α and ρ for different values of
µ, β and the Lewis numbers. In particular, we wish to determine whether there
are critical values of α and ρ at which flame extinction occurs. In section 3 we
present our results concerning the shape of the bifurcation diagrams for c as a
function of α and ρ, which will be referred to as (α, c) and (ρ, c) curves. We
determine these curves by numerical integration of the dimensionless flame equa-
tions and with pseudoarclength continuation for different values of µ, β and
the Lewis number. Our numerical investigation reveals that the (α, c) curves can
have three different shapes depending on the values of µ, β and the Lewis num-
ber. They can be monotone decreasing or they can have one turning point or
three turning points. It turns out that for suitable positive values of ρ there is a
quenching value of α above which there is no flame initiation, and below which
there is a range of α where there are four different flame velocities. The determi-
nation of these bifurcation curves represents a considerable advance on what we
have been able to determine previously about our model [4,7,8] as here we are
able to employ the powerful numerical algorithm that we have developed recently
specifically for finding the steady flame solution for this and related models [10,
12,13].

In section 4 we derive a high activation energy analysis. The previous high
activation energy asymptotics [8] for our model was restricted to the case when
µ was small. This analysis gave rise to further multiple solutions and different
qualitative behaviour of the (α, c) curves when the effect of the radical scaven-
ger was included, ρ �= 0. In this case the consumption of the fuel and inhib-
itor took place within the same reaction region. Removing this restriction on
µ being small, separates the reaction zones, and now the heat generated by the
combustion reaction uses up all the fuel before the inhibitor is consumed, with
this taking place in a further reaction zone of wider extent. Our analysis gives
some qualitative confirmation of our numerical results, showing the possible exis-
tence of four solution branches, though any quantitative agreement is very much
dependent on the particular values of the parameters.
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2. Model and theoretical results

2.1. Model

In order to make equations (2–6) dimensionless, we introduce the following
variables

y = ξz, a(y) = A(z)

A0
, x(y) = X(z)

X0
,

(9)

w(y) = W(z)

W0
, s(y) = S(z)

S0
, b(y) = T (z) − Ta

Tb − Ta

,

where

Tb = Ta + QtA0

2σCpµA

, ξ 2 = σCpA0k
2
b

2λktµA

e−2Eb/RTb ,

X0 = A0kbµX

2ktµA

e−Eb/RTb , S0 = µSA0kb

ksµA

e−Eb/RTb ,

(Tb is burnt gas temperature). Substituting (9) into equations (2–6) and introduc-
ing the parameters

ε = RTb

2Eb

, LA = λ

DAσCp

, LX = λ

DXσCp

,

LW = λ

DWσCp

, LS = λ

DSσCp

, (10)

α = 4(−Qw)W0ktkwσµ2
A

QtA
2
0k

2
bµW

e(2Eb−Ew)/RTb , β = 2ktkwµA

A0k
2
b

e(2Eb−Ew)/RTb , (11)

c=mCp

λξ
, µ = Ew

2Eb

, ρ = r
W0ksµA

A0kbµW

eEb/RTb , δ= kb

2ktσ
e−Eb/RTb (12)

with the temperature dependence of the reaction rates then given by

f1(b) = e(b−1)/2εb, f2(b) = eµ(b−1)/εb, (13)
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we obtain the dimensionless equations for our model as

L−1
A a′′ − c a′ − axf1(b) = 0, (14)

δ(L−1
X x ′′ − c x ′) + axf1(b) − x2 − sx = 0, (15)

L−1
W w′′ − c w′ − βwf2(b) = 0, (16)

L−1
S s ′′ − c s ′ + ρ βwf2(b) = 0, (17)

b′′ − cb′ + x2 − αwf2(b) = 0 (18)

on −∞ < y < ∞, where primes now denote differentiation with respect to y

and c is the dimensionless flame velocity. Here we assume that Ta = 0 in order
to avoid the mathematical difficulties associated with a ‘cold boundary’ [17]. The
boundary conditions are

a → 1, x → 0, w → 1, s → 0, b → 0 as y → −∞,

(19)

a′ → 0, x ′ → 0, w′ → 0, s ′ → 0, b′ → 0 as y → ∞.

(20)

We also assume that

c > 0 and b(y) > 0, a(y) � 0, x(y) � 0,
(21)

w(y) � 0, s(y) � 0, on − ∞ < y < ∞.

This assumption excludes the trivial solution b ≡ 0, a ≡ 1, x ≡ 0, w ≡ 1, s ≡ 0.
The Lewis numbers LA, LX, LW, LS and the parameters α, β, µ, ρ, δ, ε are
all non-negative.

The five-variable systems (14–18) will be reduced to a three-variable one by
taking LS = LW and δ small. Both assumptions are physically reasonable (note
that in (12) δ contains a factor exp(−1/ε)), and they will simplify the analysis.
Multiplying equation (16), with LW = LS , by ρ, adding to (17) and integrating
from −∞ to +∞ we obtain

s = ρ(1 − w) (22)

on using boundary conditions (19, 20). This expression can be substituted into
equation (15) and equation (17) can be omitted. A further reduction can be
made by taking δ small. Equation (15) then gives, using (22),

x(af1(b) − ρ(1 − w) − x) = 0.
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Figure 1. The (α, c) curves for ε = 0.1, β = 0.0001, µ = 0.005, LA = LW = 1, ρ = 0 obtained from
the three-variable system (indicated with 3D) and from the four-variable system (indicated with 4D)

with δ = 0.1 and δ = 0.01.

Hence we put

x =
{

af1(b) − ρ(1 − w) if af1(b) − ρ(1 − w) � 0,

0 otherwise (23)

in equations (14) and (18). Thus the three-variable system to be solved consists
of equations (14), (16) and (18), in which x is given by (23) together with bound-
ary conditions (19, 20).

We have checked the validity of approximation (23) by solving the
four-variable system (14), (15), (16), (18) with different (small) values of δ, and
comparing the results to those obtained from the three-variable system. The
comparison is shown in figure 1, where we plot the value of the velocity c as
a function of the parameter α. The values of the other parameters are fixed,
ε = 0.1, µ = 0.005, β = 0.0001, LA = LW = 1, ρ = 0. We can see that for
δ = 0.1 the curves are qualitatively similar, and for δ = 0.01 they are very close
to each other. We note that for δ � 0.001 the two curves coincide.
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2.2. Theoretical results

We now derive some qualitative properties of the original five-variable system
given by equations (14–18) without the simplifying assumptions LS = LW and
δ small.

Proposition 1. The function a is strictly decreasing, w is decreasing and s is
increasing on −∞ < y < ∞. If β > 0, then w and s are also strictly mono-
tone.

Proof. Multiplying equation (14) by LAe−LAcy and integrating over (y, ∞) we
obtain

a′(y)e−LAcy = −LA

∫ ∞

y

e−LActa(t)x(t)f1(b(t))dt

giving a′(y) < 0 for all y, because the integral is positive using (22). Similarly
from equation (16) we obtain w′(y) � 0, and from equation (17) we obtain
s ′(y) � 0. In the case β > 0 we get w′(y) < 0 and s ′(y) > 0. �

Proposition 2. The limits

a+ = lim
y→∞ a(y), b+ = lim

y→∞ b(y), w+ = lim
y→∞ w(y), s+ = lim

y→∞ s(y)

exist

lim
y→∞ x(y) = 0, (24)

ρw+ + s+ = ρ (25)

and

a+ + b+ − α

β
w+ � 1 − α

β
. (26)

Proof. The existence of a+ and w+ follows from (22) and the monotonicity of
the functions a and w.

If β = 0, equations (16) and (17) give w ≡ 1 and s ≡ 0. If β > 0 then,
from equation (16), wf2(b) → 0 as y → ∞. Equation (18) then gives x → 0 as
y → ∞. If we now integrate equation (16) and apply boundary condition (19),
we find

c(1 − w+) = β

∫ ∞

−∞
w(y)f2(b(y))dy. (27)
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Hence the infinite integral in (27) exists since w+ does. For ρ = 0, equation (17)
gives s ≡ 0. With ρ > 0, integrating equation (17) and applying (19) gives

cs+ = ρβ

∫ ∞

−∞
w(y)f2(b(y))dy (28)

since on the right-hand side approaches a finite limit as y → ∞. Thus s+ exists.
Adding equations (16, 17) and integrating, gives

ρ(L−1
W w′ − cw) + (L−1

S s ′ − cs) = −ρc. (29)

Applying the above limits in (29) gives the result (25).

To establish the existence of b+ and derive (26) we combine equations (14–16)
and (18) to eliminate reaction terms, integrate on (−∞, y) and apply boundary
conditions (19)

L−1
A a′ − c(a − 1) + δ(L−1

X x ′ − cx) + α

β
(c(w − 1) − L−1

W w′) + b′ − cb

=
∫ y

−∞
s(t)x(t)dt. (30)

Since all the terms in (30) have finite limits as y → ∞ apart from cb, taking this
limit shows that b+ exists. Using the fact that on the right-hand side of (30) and
c are both non-negative, (22) yields (26). �

We will refer to the case α = ρ = 0 as the ‘adiabatic case’, since there is no
heat loss from the system. In this case (14–18) reduces to a system of three equa-
tions, and assuming δ = 0 we get the usual equations of the adiabatic case. In
[9] it was shown that this system has a unique solution when LA � 1, i.e. there
exists a unique value of c for which this problem has a solution. This value of
c will be denoted by cad . (In the case LA < 1 uniqueness has not been proved,
nevertheless, in the numerics the adiabatic velocity cad appears to be unique for
this case as well.)

3. Numerical results

Here we present our numerical results obtained by the finite-difference dis-
cretisation of our reduced three-variable boundary-value problem:

L−1
A a′′ − c a′ − axf1(b) = 0 (31)

L−1
W w′′ − c w′ − βwf2(b) = 0 (32)

b′′ − cb′ + x2 − αwf2(b) = 0 (33)

a → 1, w → 1, b → 0 as y → −∞, (34)

a′ → 0, w′ → 0, b′ → 0 as y → ∞, (35)
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where x is given by (23). In order to determine the number of solutions for
different values of the parameters α, ρ, µ, β, LA, LW , we plot the value of
c versus α and ρ, when the values of the other parameters are fixed. We will
refer to these curves, respectively, as (α, c) and as (ρ, c) curves. These curves
are obtained using a pseudoarclength continuation method [3]. Our numerical
method was described fully in [12], where we considered the case ρ = 0 with
unit Lewis numbers LA = LW = 1, in which case the system can be reduced to
two equations.

As in [12] we introduce the new independent variable y = cy and then
approximate problem (31–35) with a boundary-value problem on a bounded
interval [0, L]. The approximation is based on the fact that the non-linear (reac-
tion) terms tend to zero as y → ±∞. Neglecting the non-linear terms in
(−∞, 0) and in (L, ∞) the differential equations can be solved analytically in
these regions, hence we get boundary conditions for all three functions at y = 0
and at y = L, ensuring the smoothness of the solution. Using the translational
invariance of the differential equations we can assume that b(0) = bI , where bI is
a suitably chosen small number, corresponding to an ignition temperature. This
gives seven undetermined boundary conditions. The extra boundary condition is
used to determine the value of the velocity c.

Introducing N grid points in the interval [0, L], we discretise the differen-
tial equations with finite differences, giving 3(N − 2) equations at the internal
grid points. Hence, together with the seven boundary conditions we have 3N +1
equations for the same number of unknowns. This system can be solved using
Newton–Raphson iteration if a good initial guess is known. The solution for the
adiabatic case α = ρ = 0 can be obtained easily starting from linear profiles
as an initial guess. Then, increasing the value of α or ρ, the solution can be
obtained by continuation using a standard pseudoarclength continuation method
[3]. We also considered the values of bI and L to ensure that problem given
in [0, L] is a good approximation to (31–35). It turned out that L = 10 and
bI = 0.1 was suitable for most of the parameter range considered.

In our numerical studies we fixed the value of ε at ε = 0.1 and deter-
mined the (α, c) and (ρ, c) curves for different values of LA, LW , µ and β. We
found, that the characterization of these curves is based on the classification of
the (α, c) curves for the ρ = 0 case given in [12]. Therefore we briefly recall
this classification. The (α, c) curve could have three different shapes depending
on the value of µ and β. For µ > 1 the curve was monotone decreasing with
increasing α and was unbounded in the α direction, i.e. there was no quench-
ing. For µ � 1 the curve was bounded in the α direction, with c → 0 at a
finite value of α, and had two different shapes. For larger values of β the curve
was monotone decreasing and for smaller values of β it was S-shaped. These
results suggest that, for µ < 1, hysteresis bifurcations occur at certain values
of β. The parameter pair (µ, β) is a hysteresis bifurcation point if the (α, c)

curve has an inflexion. The hysteresis bifurcation curve was determined in [12]
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for LA = LW = 1, and for general Lewis numbers in [13]. It was found that, by
increasing the value of LA, the hysteresis bifurcation curve in the (µ, β) param-
eter plane moved to the left. If the (µ, β) parameter pair was above the curve,
then the (α, c) curve was decreasing and bounded. If it was below the curve, then
the (α, c) curve was S-shaped. The hysteresis bifurcation curve appeared to tend
to the vertical line µ = 1, though this upper limit was left unresolved in [12].

Returning to the present case, we found that the shapes of the (α, c) and
(ρ, c) curves are determined by the position of the (µ, β) parameter pair with
respect to the µ = 1 line and to corresponding the hysteresis bifurcation curve.
These curves divide the (µ, β) parameter plane into three regions. In the course
of our numerical study we fixed the value of the Lewis numbers and, choosing a
(µ, β) parameter pair, we first determined the flame velocity and the profiles for
the adiabatic case α = 0, ρ = 0. Then, using the pseudoarclength continuation
method starting from the adiabatic case, we determined the (α, c) curve for ρ = 0,
and the (ρ, c) curve for α = 0. Finally, from selected points of the (α, c) curve, we
started a continuation in ρ yielding (ρ, c) curves for different values of α. Simi-
larly, from some points of the (ρ, c) curve we started a continuation in α yielding
(α, c) curves for different values of ρ. The results of these continuations are shown
in figures 2–4. In these figures we also show the critical points of the (α, c) and
(ρ, c) curves, i.e. the saddle-node bifurcation curves in the (α, ρ) parameter plane.
These curves divide the (α, ρ) parameter plane according to the number of flame
solutions. The number of solutions are also shown in the different regions.

In figure 2, for µ = 0.001, β = 0.0001, we see a typical situation for the
S-shaped case when the (µ, β) parameter pair is below the hysteresis bifurcation
curve. From figure 2(a) we can see that ρ = 0 is a singular limit, as the curve for
ρ = 0 has two turning points and increases to its large upper bound in α as c →
0, whereas the curves for small positive values of ρ have three turning points,
with an upper bound in α at a non-zero value of c, and return to the α = 0 axis.
Hence, for given values of the parameters there can be four solutions. At a par-
ticular value of ρ the two lower turning points merge and for larger ρ values the
(α, c) curve has only one turning point. Finally, there is a critical value of ρ =
ρcrit where the (α, c) curve disappears. The value of ρcrit can be determined from
the (b) part of the figure, namely it is the ρ value at the turning point of the
curve for α = 0. The evolution of the (ρ, c) curves plotted in figure 2b) shows
that, for the smaller values of α, they follow the α = 0 case with one turning
point and a critical value of ρ for the existence of a steady flame. For increased
values of α, there is a hysteresis bifurcation on the lower solution branch, with
then two turning points appearing. On increasing α further, the branches of the
(ρ, c) curves become disjoint before finally disappearing altogether at critical val-
ues of α given by the turning points on the ρ = 0 curve in figure 2(a). Figure 2(c)
shows the saddle-node bifurcation curves, i.e. the loci of the turning points, in
the (α, ρ) parameter plane. The long curve, connecting the two axes, is the locus
of the turning points of the (ρ, c) curves, i.e. the curve gives the critical value
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Figure 2. (a) The (α, c) curves for seven different values of ρ: ρ = 0, 0.0001, 0.0025, 0.0045, 0.0057,
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of the (ρ, c) curve for a given value of α, at the same time it is the locus of the
upper turning points of the (α, c) curves. The critical α values at the lower two
turning points of the (α, c) curve are given by the cusp curve. The left branch of
the curve corresponds to the lowest turning points (maximum points), the right
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Figure 3. (a) The (α, c) curves for five different values of ρ: ρ = 0, 0.0001, 0.0006, 0.0016, 0.0021.
(b) The (ρ, c) curves for five different values of α: α = 0, 0.0004, 0.0008, 0.0012, 0.0017.
(c) Saddle-node bifurcation curve in the (α, ρ) parameter plane. The number of solutions is
indicated in the different regions. In all the three cases ε = 0.1, µ = 0.1, β = 0.01, LA = LW = 1.

branch belongs to the middle turning points (minimum points). The numbers in
the figure indicate the number of solutions in the different domains. We can see
that the number of solution changes by two on both curves, as expected for sad-
dle-node bifurcation curves.
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In figure 3 we see a typical situation for the monotone, bounded case, that
is when the (µ, β) parameter pair is above the hysteresis bifurcation curve, here
µ = 0.1, β = 0.01. In figure 3a we can see that ρ = 0 is again a singular limit,
as the curve for ρ = 0 has no turning point, but the curves (small) positive val-
ues of ρ do have turning points. For the critical value of ρ = ρcrit the (α, c)

curve disappears. The value of ρcrit can be determined from the (b) part of the
figure, namely it is the ρ value of the turning point of the curve for α = 0. The
(ρ, c) curves are shown in figure 3(b). All the curves for the different values of α

have one turning point, with again a critical value of ρ for existence. Figure 3(c)
shows the saddle-node bifurcation curve, i.e. the locus of the turning points, in
the (α, ρ) parameter plane.

In figure 4 we see a typical situation for the monotone, unbounded case,
µ = 1.5, β = 0.01. From figure 5(a) we see that, for ρ = 0 and for small positive
values of ρ, the curves are monotone and unbounded. However, the curves for
larger values of ρ have a turning point. For the critical value of ρ = ρcrit the
(α, c) curve again disappears at the ρ value for the turning point in the α = 0
curve. The (ρ, c) curves are shown in figure 4(b). All the curves for different val-
ues of α have one turning point. In this case the (ρ, c) curves are not ‘nested’
inside each other for increasing α as they are in figures 2(b) and 3(b). The value
of c for ρ = 0 decreases and ρcrit increases as α increases. Figure 4(c) shows the
saddle-node bifurcation curve.

We also investigated the effect of the Lewis numbers. In [13] we found that,
in the ρ = 0 case, the value of LW does not change the (α, c) curve signifi-
cantly. Some numerical experiments suggest that this is the same in the ρ > 0
case as well. However, we did not perform a systematic numerical investigation
for different values of LW . Instead we used the physically relevant assumption
LA = LW in determining the (α, c) and (ρ, c) curves. For different values of LA

we repeated the numerical experiments shown in figure 2–4 and found that the
(α, c) and (ρ, c) curves can have the same shapes as for unit Lewis numbers. Our
results are summarised in figure 5, where µ = 0.005 and β = 10−4 are fixed
and LA = LW is changed (the values of LA = LW are shown in the figure).
In figure 5(a) the (α, c) curve is shown for ρ = 10−4. We can see that for val-
ues LA > 1 the three turning points survive, becoming more obvious, and that
the value of αcrit increases with LA. For values of LA < 1 the two upper turn-
ing points can merge and the curve has only one turning point, with a decreased
value of αcrit. In figure 5(b) the (ρ, c) curve is shown for α = 0. There does not
appear to be a qualitative change in the shape of the curve as LA is changed,
though the values ρcrit increase considerably with LA.

In figure 6 we show the temperature and concentration profiles in a case
when there are four solutions for the same value of the parameters. The case
shown in the figure is for the parameter values used for the second curve shown
in figure 2(a), namely µ = 0.001, β = 10−4, ρ = 10−4, and for α = 2.2 × 10−5

there are four solutions, the corresponding values of c are shown in figure 6. We
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Figure 4. (a) The (α, c) curves for four different values of ρ: ρ = 0, 0.0013, 0.0039, 0.0052. (b)
The (ρ, c) curves for five different values of α: α = 0, 0.0003, 0.0013, 0.0026, 0.0029. (c) Saddle-
node bifurcation curve in the (α, ρ) parameter plane. The number of solutions is indicated in the

different regions. In all the three cases ε = 0.1, µ = 1.5, β = 0.01, LA = LW = 1.

notice that the maximum temperature and the maximum value of x decreases
with decreasing c. We observe that, for larger flame velocities, the fuel is con-
sumed faster than the endothermic species w, however, for small values of c the
endothermic species w is consumed first.
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β = 0.0001, LW = LA.

The above numerical solutions show that complex bifurcation behaviour is
seen when α, β and ρ are small (see figure 2). We now examine this case in the
high activation energy, small ε, limit.

4. High activation energy analysis

Here we obtain a solution of equations (31–33) valid in the limit as ε → 0, with

α = ε4α, β = ε3β, ρ = ε2ρ, c = ε3/2c, (36)
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Figure 6. The temperature and concentration profiles for µ = 0.001, β = 10−4, LA = LW = 1,
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where α, β, ρ, c are all of O(1) as ε → 0. The scaling of the flame speed c

is required for consistency in the matching process that arises in the asymptotic
analysis and we take β > 0 (see proposition 2).

An equivalent case, without the inclusion of the radical scavenger and with
the exothermic reaction being first-order, has been treated in [12] for unit Lewis
numbers. The present case (with the effects of the scavenger included) has been
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treated in [8], again for unit Lewis numbers and on the stricter assumption that
µ was small, of O(ε). This case has a qualitatively different asymptotic struc-
ture to that required here (and seen in [12]) and gives a less complex bifurcation
behaviour. We do not make this assumption and consider the case when µ (and
the Lewis numbers) are of O(1).

The asymptotic structure in the present case follows that described in [12].
There is a preheat zone at the front of the flame, of thickness O(ε−3/2), and two
reaction zones. In the first zone, of thickness O(ε−1/2), the fuel is consumed with
the concentration of the inhibitor W remaining constant (to leading order). It is
in the second reaction zone, of thickness O(ε−3/2), that W reacts. We start our
solution in the preheat zone, where we write y = ε3/2y. Since µ is O(1) and b <

1 in this region, the (Arrhenius) reaction terms are neglible. Equation (23) then
gives x ≡ 0 in the preheat zone. A solution is sought by expanding

c(ε) = c0 + εc1 + · · · (37)

a(y; ε) = a0(y) + εa1(y)+, · · · ,

b(y; ε) = b0(y) + εb1(y) + · · · ,

w(y; ε) = w0(y) + εw1(y) + · · · . (38)

A straightforward calculation gives, following [12],

b0 = ec0y, b1 = (T1 + c1y) ec0y, (39)

a0 = 1 − eLAc0y, a1 = −c1LAy eLAc0y, (40)

w0 = 1 − S1 eLW c0y, w1 = −LWc1S1y eLW c0y + S2 eLW c0y, (41)

where the constants T1 and S1 will be determined in the analysis. The ai, bi, wi

have been chosen to satisfy the outer boundary conditions (34) and have a0 small
and b0 � 1 for y small. This anticipates the matching with the first reaction zone,
which is what we consider next.

In this first reaction zone, where all the fuel A will be consumed, we trans-
form equations (31–33) by putting

a = εA, b = 1 − εB, x = εX, ζ = ε1/2y (42)

and leaving w unscaled. We look for a solution of the resulting equations by
expanding

A = A0 + εA1 + · · · , B = B0 + εB1 + · · · ,

X = X0 + εX1 + · · · , w = w0 + εw1 + · · · .
(43)
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On using (36) and (37), we obtain, at leading order, from (23),

X0 = A0 e−B0/2. (44)

Applying (44) in equations (31) and (33) then gives

L−1
A A′′

0 − A2
0 e−B0 = 0, B ′′

0 − A2
0 e−B0 = 0 (45)

(where primes denote differentiation with respect to ζ ). The matching conditions
are, from (39,40), that

A0 ∼ −c0LAζ, B0 ∼ −c0 ζ − T1, as ζ → −∞ (46)

We can eliminate the reaction terms from equations (45) and, on integrating and
applying the matching conditions (46), we find that

L−1
A A0 = B0 + T1. (47)

Using (47) in equation (45), integrating and applying (46) gives

B
′2
0 = c2

0 − 2L2
A((B0 + T1)

2 + 2(B0 + T1) + 2) e−B0 . (48)

As ζ → ∞, A0 → 0 (all fuel consumed), so that B0 → −T1. Equation (48) then
gives, in this limit,

c2
0 = 4L2

A eT1 . (49)

Equations (32) and (41) give, at leading order,

w′′
0 = 0, w0 → 1 − S1 as ζ → −∞ (50)

so that w0 ≡ 1 − S1.
At O(ε), we have, from (23,31,33), that

X1 = e−B0/2
(

A1 − A0

2
(B1 + B2

0 )

)
− ρ (1 − S1) (51)

and

L−1
A A′′

1 − c0A
′
0 − e−B0/2

(
A0X1 + A1X0 − A0X0

2
(B1 + B2

0 )

)
= 0,

B ′′
1 − c0B

′
0 − 2X0X1 = 0. (52)

We can eliminate X0 and X1 from equations (52) using (44,51). Combining the
resulting equations then gives

B ′′
1 − c0B

′
0 − (L−1

A A′′
1 − c0A

′
0) + ρ (1 − S1)LA(B0 + T1) e−B0/2 = 0 (53)
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The matching conditions are, from (39, 40), that

B1 ∼ −c2
0

2
ζ 2 − (c1 + c0T1)ζ + · · · ,

A1 ∼ −L2
Ac2

0

2
ζ 2 − c1LAζ + · · · as ζ → −∞ (54)

If we integrate equation (53) and apply the matching conditions (46,54), we
obtain

B ′
1 − c0B0 − (L−1

A A′
1 − c0A0) + ρ(1 − S1)LA

∫ ζ

−∞
(B0 + T1) e−B0/2dζ = 0. (55)

Equation (55) gives, on letting ζ → ∞,

B1 ∼ − (c0T1 + ρ(1 − S1)I1) ζ + · · · as ζ → ∞ (56)

since A1 → 0, where I1 is the integral [8]

I1 = LA

∫ ∞

−∞
(B0 + T1)e−B0/2dζ =

∫ ∞

0

se−s/2√
4 − 2(s2 + 2s + 2)e−s

ds = 4.9283

on using (48,49).
Equation (32) and (41) give

L−1
W w′′

1 − c0w
′
0 = 0, w1 ∼ −S1LWc0ζ + S2 as ζ → −∞. (57)

From which it follows that w1 = −S1LWc0ζ + S2.
We are now in a position to consider the second reaction region (for W ).

In this region a ≡ 0 and hence, from (23), x ≡ 0. The behaviour of b and w as
ζ → ∞ suggests a scaling for this region of

b = 1 − εU, Y = ε3/2y (58)

with w left unscaled. Applying (58) in equations (32) and (33) gives, for the lead-
ing order terms (U0, w0) in an expansion in powers of ε,

U ′′
0 − c0U

′
0 + α w0 e−µU0 = 0, (59)

L−1
W w′′

0 − c0w
′
0 − β w0 e−µU0 = 0, (60)

(where primes now denote differentiation with respect to Y ), subject to the
matching conditions

U0 ∼ −T1 − (c0T1 + ρ(1 − S1)I1)Y + · · · , (61)

w0 ∼ (1 − S1) − S1LWc0Y + · · · as Y → 0.
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On eliminating the reaction terms from equations (59) and (60), integrating and
applying the matching conditions (61), we obtain

β(U ′
0 − c0U0) + α(L−1

W w′
0 − c0w0) = −αc0 − ρβI1(1 − S1). (62)

The leading order problem is then given by equations (59) and (62) subject to
the boundary conditions given by (61) and that

U ′
0 → 0, w0 → 0 as Y → ∞ (63)

with T1 related to c0 by equation (49). A (numerical) solution of this system
determines S1 and T1 in terms of c0 and hence the corresponding (α, c0) or
(ρ, c0) curves can be found.

We can obtain the solution directly, when α = 0. From (59) and (61), U0 =
−T1 (a constant) in this case, with then

T1 = −ρI1(1 − S1)

c0
. (64)

Equation (60) can be solved to give, on applying the matching conditions (61),

w0 = LWc0

γ + Lwc0
e−γ Y , where γ = 1

2

(√
L2

Wc2
0 + 4βLW eµT1 − LWc0

)
,

S1 = γ

γ + LWc0
. (65)

Applying (64) in (65) gives an equation for ρ in terms of T1 as

ρ = − 1
LWI1

T1eT1/2
(

LALW +
√

L2
WL2

A + βLW e(µ−1)T1

)
. (66)

From (66) we must have T1 � 0, with ρ = 0 at T1 = 0 (c0 = 2LA) and ρ → 0 as
T1 → −∞ (c0 → 0) with ρ > 0 in this range. Thus there is at least one turning
point on −∞ < T1 < 0 giving critical values for ρ when α = 0. This can be seen
in the numerical solutions, see figures 2(b), 3(b), 4(b) and 5(b).

For µ = 1, T1,crit = −2 and hence

ρcrit = 2e−1

LWI1

(
LWLA +

√
L2

WL2
A + βLW

)
(67)

showing that there is only one turning point in this case. For µ �= 1 it is possible
to have three turning points and hence four solution branches. To investigate this
possibility we differentiate ρ in expression (66) with respect to T1 and, on equat-
ing this to zero, we find after a little algebra that the turning points of (66) are
found where

LALW

(
LALW +

√
L2

WL2
A + βLW e(µ−1)T1

)
= −βLW e(µ−1)T1(µT1 + 2)

(T1 + 2)
. (68)
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Figure 7. The β – µ parameter plane, showing the region where three turning points (four solution
branches) can occur in expression (66) for α = 0, (a) small µ, (b) large µ, LA = LW = 1.

Since on the left-hand side of (68) is positive and monotone for all T1, the turn-
ing points of (66) must lie in the range

−2 < T1 < − 2
µ

for µ > 1, − 2
µ

< T1 < −2 for µ < 1. (69)

For (66) to have more than one turning point, on the right-hand side of (68)
must also have turning points. These arise where

µ(T1 + 2)2 − 2(µ − 1)(T1 + 2) + 2 = 0, (70)
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Figure 8. The positions of the saddle-node bifurcations in the ρ – β plane for (a) µ = 0.15,
(b) µ = 5.5.

which gives a necessary condition for the existence of three turning points that

µ < 2 −
√

3 or µ > 2 +
√

3, (71)

when condition (71) is satisfied both roots of equation (70) satisfy conditions
(69). The final requirement for multiple solutions is that the local maximum and
the local minimum on the right-hand side of equation (68), given by the values
of T1 obtained from (70), must, respectively, lie above and below the curve given
by on the left-hand side of equation (68).
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Figure 9. The existence of four solutions to equation (66). Plots of c0 against ρ for LA = LW = 1.0
and (a) β = 0.1, µ = 0.15, (b) β = 100.0, µ = 5.5.

We can use (68,69,71) to map out the β – µ parameter plane in which
there are three turning points. The results are shown in figure 7 for LA =
LW = 1.0, with µ > 3.96 or µ < 0.191 being necessary for four solution
branches, slightly less or greater values respectively than given by (71). Figure 7
enables us to determine, for a given value of µ, the curves in the ρ – β param-
eter plane on which the turning points in the c0 – ρ plots occur. These are
illustrated in figure 8 for µ = 0.15 and µ = 5.5. The cusp points on these
curves are given by the values for β at µ = 0.15 and at µ = 5.5 in fig-
ure 7. The corresponding c0 – ρ plots are shown in figure 9 for β = 0.1 and
for β = 100.0. For these parameter values the turning points are at, respec-
tively, (c0, ρ) = (0.061, 0.312), (0.014, 0.318), (0.538, 0.343) and at (c0, ρ) =
(1.046, 0.294), (0.764, 0.300), (1.581, 0.348).

We now assume that α > 0. In the case when LW =1 we can integrate equa-
tion (62) again, following [12], to get

βU0 + αw0 = α + ρβI1(1 − S1)

c0
(72)

from which it follows that

βT1 + αS1 = −ρβI1(1 − S1)

c0
. (73)
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Figure 10. c0 – ρ curves for a range of values of α > 0 obtained from the numerical integration of
equations (75,76) for (a) β = 0.1, µ = 0.15, (b) β = 100.0, µ = 5.5, LA = LW = 1.

Using equation (73) to eliminate S1 from equation (72) gives

βU0 + αw0 = α2c0 + ρβ
2
I1T1

αc0 − ρβI1
≡ R0(c0, T1) (74)

Equation (74) can then be used to eliminate w0 from equation (59) to give

U ′′
0 − c0U

′
0 + (R0 − βU0) e−µU0 = 0 (75)
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subject to the boundary conditions

U0 ∼ −T1 − c0α(c0T1 + ρI1)

αc0 − ρβI1
Y + · · · as Y → 0, U ′

0 → 0 as Y → ∞ (76)

(the latter condition implies that U0 → R0/β as Y → ∞), with c0 related to T1

by equation (49).
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This system reduces to the one discussed in [12] when ρ = 0 and LA = 1,
where it was seen that up to three solutions were possible. We can integrate equa-
tions (75,76) numerically, following [12]. The singularity in R0 when αc0 = ρβI1

is removable, since equation (73) gives T1 = −α/β in this case. We solved equa-
tions (75,76) with α > 0 for the two cases shown in figure 9 (when α = 0). The
results are shown in figure 10. The existence of four solution branches continues
to relatively large values of α for β = 100 (figure 10(b), even with α = 10.0 the
curve has a similar form to that shown in figure 9(b). However these additional
solution branches disappear at much smaller values of α for β = 0.1.

5. Conclusions

We have considered the conditions for flame propagation and flame inhibi-
tion in a model driven by an exothermic reaction subject to inhibitory chemical
processes. These consisted of the endothermic decomposition of an inhibitor spe-
cies W leading to the formation of a ‘radical scavenger’ S, which could then act
as a catalyst for the removal of active radical X through an additional termina-
tion step. The first process is characterised by the parameter α and the second
by the parameter ρ. These parameters, which, respectively, measure the rate of
heat loss through the endothermic reaction relative to the rate of heat genera-
tion by the combustion reaction and the fraction of radical scavenger molecules
produced by the decomposition of W , together with the parameter β, which
measures the rate at which W is consumed relative to the fuel, are the impor-
tant ones in determining the conditions for flame inhibition. Each process on
its own can fully inhibit flame propagation. The effect of only the first process
(i.e. when ρ = 0) was investigated fully in [7,12,13]. It was found that there is
flame quenching in certain domains of the (µ, β) parameter plane, i.e. the (α, c)

curve has a turning point, for appropriate values of µ and β. In fact, the curve
is folded into a characteristic S-shape, showing bi-stability between upper and
lower branches of steady solutions separated by a branch of saddle point solu-
tions. Otherwise flames were possible for all α, though had considerable reduc-
tions in speed as α increased.

A new feature caused by the addition of the radical scavenger is that the
(α, c) curve has a turning point for any (µ, β) parameter pair provided ρ is suffi-
ciently large, (for µ � 1, it has a turning point for any positive ρ). Thus, for any
ρ �= 0, there is a critical value of α for flame propagation. Above this critical
value the flame cannot be established, i.e. the system has only the trivial solu-
tion. An additional feature of our model is that for small positive values of ρ

there can be four solutions below the critical value of α. That is the (α, c) curve
can have three turning points for suitable values of µ and β. Bounds on the
parameter µ for the possible existence of four solution branches were provided
by the high activation enegy asymptotics, equation (71).
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For different values of the parameters LA, LW , β and µ, the dependence
of the flame speed c as a function of α and ρ were determined numerically. As
in the scavenger-free (ρ = 0) case it was found that the (µ, β) parameter plane
can be divided into three regions according to the shape of the (α, c) curve [12,
13]. A given horizontal line (β fixed) in the (µ, β) parameter plane intersects all
three regions. For a given value of β we can have the following three cases. For
small values of µ the (α, c) curve can have three or one turning point depend-
ing on the value of ρ, that is the system can have four, two or zero solutions.
The evolution of the (α, c) curve as ρ is varied is shown in figure 2. For larger
values of µ the (α, c) curve has one turning point if ρ > 0, so that the system
has two solutions if α is below its critical value. The evolution of the (α, c) curve
as ρ is varied is shown in figure 3. Increasing the value of µ further the (α, c)

curve may be monotone even for positive values of ρ, i.e. there is no quenching
value of α. However, for larger positive values of ρ the (α, c) curve has a turning
point, i.e. α has a critical value, above which there is no flame propagation. The
evolution of the (α, c) curve in this case is shown in figure 4. The high activation
energy asymptotics also revealed that, for even higher values of µ, the situation
in which there are four solution branches returns.

We can compare the values of the wave speed c from the high activation
energy analysis with those obtained numerically with ε = 0.1. We concentrate on
the α = 0 case and take LA = LW = 1. To make this comparison we plot c/cad

against ρ for two cases, for a small value of µ (µ = 0.1, β = 10−4) shown in
figure 11(a), and for a larger value of µ (µ = 1.5, β = 10−2) shown in figure 11b.
In the latter case there is reasonable agreement between the two sets of results.
Both curves have the same shape and have critical values for ρ differing by about
15%, the value determined by the numerical integrations being slightly higher. In
the former case (figure 11(a)) the curves have a similar form (both having four
solution branches – as shown in the inset for the numerical solutions) though the
values for the two cases are very different. This suggests that very little quanti-
tative information is provided by the high activation energy asymptotics for this
value of ε and a much smaller value of ε would be required for better agree-
ment. The need for very small values of the activation energy parameter to get
reasonable agreement with results from the high activation energy analysis has
been discussed in Ref. 18 and reasons for it have been advanced. These appear
to apply, at least in certain parameter ranges, in our model as well.
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